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I. Introduction

The thermodynamic stability of clusters of small

numbers of atoms or molecules can be described quantita-

tively by the equilibrium constants for the formation of

the clusters. For the reaction

n A =A n

the equilibrium constant is :

where parentheses about a species name denotes the number

density of the species. A knowledge of these equilibrium

constants is important in a number of areas of chemical

physics. First, the values of K 2and K 3are related to the

second and third virial coefficients of the substance.

Second, the theory of nucleation of the liquid phase (or

the solid phase) in a supersaturated vapor uses these equi-

librium constants and their closely related free energies.

Third, it has been suggested that the variable continuous

absorption of infrared radiation by the atmosphere arises

from these clusters. 1  A reliable and practical method for

the theoretical calculation of cluster formation equilibrium

constants would have consequences for each of these three areas.
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The calculation of the equilibrium population distribution

of water clusters is of particular current importance because

of the controversy surrounding the recent .yohss2 ta

water clusters are much more prevalent in the atmosphere

than had been assumed.

Equilibrium constants for reactions such as

n A + B -BA

where A is water and B is an ion can be measured by mass

spec trometric techniques. 3A theory for the calculation of

such constants would enable the experiments to be interpreted

quantitatively in terms of the basic interactions between

ions and water and between water molecules.

The classical way to evaluate equilibrium constants for

clusters of identical molecules treats the cluster as a

droplet whose free energy contains bulk and surface contri-

butions. 45Such a theory makes a connection with the macro-

scopic thermodynamic properties of the material but does not

address the relationship between intermolecular interactions

and the stability of clusters.

The partition functions for clusters of atoms and

molecules can in principle be calculated, leading to a sta-

tistical mechanical theory of cluster formation constants
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that is similar to the usual statistical mechanical theory

of equilibrium constants for chemical reactions. Hill's

6
physical cluster theory provides a rigorous formalism for

defining the cluster equilibrium constants and relating

them to the thermodynamics of a gas.

if one applies to clusters the same approximations that

are used in calculating partition functions for molecules

in the gas phase, such as rigid rotor and harmonic oscillator

approximations, then partition functions and their associated

free energies and equilibrium constants can be calculated.

Such calculations are most appropriate for clusters if the

temperature is low, if the configuration is solid-like, and

if there is a unique lowest energy configuration that domi-

nates the thermodynamic properties at low temperatures.

(See Ref. 7 for a discussion of the single configuration

approximation.)

Computer simulation methods, such as the molecular

dynamics and Monte Carlo methods, can be used to eliminate

statistical mechanical approximations. Many studies of

atomic and molecular clusters have been made using these

methods. 8-0 A fundamental problem associated with using

simulation methods for the evaluation of cluster properties

is that the simulation of a cluster at a particular tempera-

ture cannot be used to evaluate the equilibrium constant



or cluster free energy at that temperature. The quantity

that is most easily calculated is the average energy of a

cluster as a function of temperature. Most of the computer

studies listed above were in fact calculations of the energy

and not the free energy. The energy is related to the

temperature derivative of the free energy, and so calcula-

tion of the energy for a range of temperatures can lead to

free energies by numerical integration, but the results con-

tain an unknown constant of integration that represents the

free energy in the state at which the integration is started.

There are several ways around this difficulty. One is

to start the integration at a very low temperature state and

use the harmonic approximation and the single configuration

approximation to evaluate the free energy of that state. A
9

second, due to Lee et al., makes use of the arbitrariness

in the definition of a cluster. They developed a way of

calculating the derivative of the free energy with respect

to the radius of the hypotiietical containment sphere used

to define the cluster. For infinite containment spheres,

the atoms in the cluster are mostly far from each other and

analytical methods can be used to calculate the free energy.

Then by numerical integration with respect to the sphere

radius, they are able to find the absolute free energy of a

6



cluster defined with a finite sphere containment radius.

10
A third method was developed by Mruzik et al. They used

a coupling parameter method and evaluated the average

potential energy of interaction of one molecule with the

n - 1 other molecules in the cluster calculated as if the

interaction of the first molecule with the others were multi-

plied by a coupling parameter between 0 and 1. This average

energy is in fact the derivative of the cluster free energy

with respect to the coupling parameter. Integration of the

average energy with respect to coupling parameter then gives

the difference in free energy of clusters of n -1 molecules

and clusters of n molecules (when an additional correction

is made for the difference in the size of the containment

sphere used in the definition of n molecule clusters and n - 1

molecule clusters).

The first method depends for its accuracy on the validity

of the assumptions used in the analytical calculation of the

free energy of the low temperature cluster. The second and

third methods rely solely on the computer simulation tech-

niques and thus are clearly to be preferred. The cost and

difficulty of performing such simulations has decreased

dramatically in the last decade, and in the future computer

simulation methods will be the most practical and accurate

7
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ways of evaluating cluster free energies.

In this paper we present a new method of evaluating

the free energies and equilibrium constants of clusters of

atoms and molecules. The method is based on evaluating the

energy of a cluster as a function of temperature using a

variation of the molecular dynamics computer simulation tech-

nique and then integrating with regard to temperature. The

state of infinite temperature is used to evaluate the con-

stant of integration analytically without any approximations.

Provided that the intermolecular or interatomic potential

satisfies certain conditions, namely that the potentials be

finite at all nonzero distances and diverge no more strongly

than r- at short distances, the integrand in the tempera-

ture integration does not diverge as the temperature

approaches infinity, and thus the integration to the infinite

temperature state can easily be performed. The method is

applied to the calculation of the equilibrium constants for

the formation of clusters containing two to five water mole-

cules.

In Section II, we discuss the theory of the method,

using Hill's physical cluster theory as a starting point.

In Section III we discuss the theory of the computer simula-

tion algorithm we use. Section IV discusses the intermolecular

8



and intramolecular potentials for water that we used.

Section V discusses the methods we used to analyze the

results and verify their correctness. Section VI contains

the results for clusters of two to five water molecules.

Section VII contains a brief discussion of the method.



II. Formal Theory of Equilibrium Constants

for Cluster Formation

A. Hill's general theory

Hill's physical cluster theory 6provides the statistical

mechanical basis for calculating equilibrium constants for

cluster formation. His theory provides no unique choice of

definitions for clusters. Instead it provides a set of easily

satisfied conditions that the cluster definitions must satisfy,

and for any such set of conditions it gives precise expres-

sions for the cluster equilibrium constants. We will apply

his general formulation to the problem of water clusters.

We use classical mechanics to describe the nuclear motions

in the water molecule. Let x i denote a complete set of posi-

tion and momentum variables for a single water molecule. The

canonical partition functions for N water molecules in volume

V is

Q~(~,N =( 2N 9Nl N N)]
Q(3V=(N2hdx exp[-PH. x ).(2.1)

The factors of two are the symmetry numbers for the molecules.

To apply Hill's theory, one must find a way to decompose Q N

so that:

N £NQN' (2.2)

10



Here N is a set of nonnegative intgers N, N2, ... , NN'

N. refers to the number of clusters of i molecules. These

numbers must satisfy the condition

N= SN = N. (2.3)= I

The prime in the sum in Eq. (2.2) denotes that the sum is

over all sets of nonnegative values of N that satisfy condi-

tion (2.3). There are many ways to make such a decomposition.

The physical meaning of QN is that it represents the canonical

partition function of a system that contains N molecules that

exist as NI monomers, N2 dimers, ... N clusters of s mole-

cules, ... , etc.

The partition functions for systems that contain only

one cluster play an important role in the theory. Departing

from Hill's notation, let us define

Q) Q100... (PV)

Q(2) = Qoo .

Q(n) = Qo0  1 . (0,V), n 2 3 (2.4)

Q(n) is the canonical partition function for one cluster of

n molecules. According to most reasonable definitions of

clusters, n molecules will be in a cluster only if they are

separated by microscopic distances that are independent of

ti



the size of the volume V. This leads to Q (n) being of

order V for large V.

Let p ndenote the average number density of clusters

of n molecules. Hill's theory provides a formula for p

that is an expansion in powers of the density. To lowest

order in density, his result is

P (ln -K()
n n(P

where

K In) (Q n/V)/(Q l/V)n (2.5)

The important assumptions made in deriving this result are

that the partition function can be decomposed according to

Eq. (2.2) for all N and that Q ()/V approaches a limit as

B. One realization of Hill's theory

One way of accomplishing the decomposition in Eq. (2.2)

is to decompose phase space for each value of N into dis-

joint regions such that in each region the states have a

well defined set of values of the cluster numbers N. In

particular, if we can define the set of functions CNOS 
)

for all N and N that satisfy Eq. (2.3) such that

12



CN(x) = 1 if the phase point xN has cluster

numbers N

= 0 otherwise (2.6)

and such that

N

z I CN(xN) = , (2.7)

for all N and xN then Eq. (2.2) is satisfied if we let

Q = (N!2Nh 1 dxNCN(xN)exp[-H). (2.8)

To define these functions it is necessary to have a pro-

cedure for assigning a unique set of cluster numbers N to

every phase point xN for an N molecule system.

Let us write

c(1)( ) =l
C= 1

C= Co(x 2) (2.9)

C (n) (n) = Co00...l(.Sn) n > 3. (2.10)

The procedure we use for defining the functions in

(2.6) is the following. We imagine that a necessary (but not

sufficient) condition for n molecules to form a cluster of

n molecules is that the center of mass of each of the mole-

cules be less than a distance R from their mutual center of
n

13



mass. We decide on the set of values of R for all n. We
n

use the following algorithm for deciding, for a phase point

N
xhow many clusters of each size are present.

1. Let n N.

2. If n 1, let the molecule be regarded as a

cluster of 1 and stop.

3. If n > 1. see if there are any sets of n molecules

that are all within a distance R of their mutual

center of mass.

4. If there is no such set, let n n n-1 and go to 2.

5. If there is one such set, call these molecules a

cluster of n, remove them from further considera-

tion, let n - n - 1 and go to 2.

6. If there is more than one such set, find the set

of n that is most compact, in the sense that the

largest distance of a molecule from the mutual

center of mass is smaller for that set than for

any other set. Call this most compact set a

cluster of n, remove them from further considera-

tion, keep n unchanged and go to 3.

Except for a set of phase points of measure zero (those points

where there are groups of the same n that are equally compact),

this algorithm gives a precise way of defining how many clusters

14



of each type exist for any phase point, and thus it provides

a way of partitioning N molecule phase space in a way needed

for the validity of Eqns. (2.6) and (2.7).

It follows from this procedure that

C(n)(xn) = I if the center of mass of each mole-

cule is less than R from the center
n

of mass of the set of n molecules

= 0 otherwise. (2.11)

Combining Eqs. (2.4), (2.5), (2.8), (2.9), (2.10), and

(2.11), we obtain

Kn(O) = In(/II(f), n  (2.12)

where

I(B) = (n!)- 1 J dxn C(n)(xn)exp[-pH(xn)]. (2.13)
V

C. Temperature dependence of the equilibrium constants

The integrals I (p) cannot be evaluated directly byn

computer simulation, but their logarithmic derivative with

respect to p can be evaluated. From Eq. (2.13) it follows

that

d in I /dP -(H xn))n N

15



where the average on the right side is defined by

n n(
<f(xn))n - dxnf(xn)exp[-1H(xn)]C(n) (2S)

V

x [j dxn exp[-H(xn)]C(
n )(xn)] - I

It follows from Eq. (2.12) that

d in Kn (f)/dP = -<H(2n), n + n(H(x ))1* (2.14)

The Hamiltonian H is a sum of kinetic energy T and potential

energy U,

H(xn) = T(xn) + U(xn)

where U includes both intermolecular and intramolecular

potential energy. The contributions of T to the two terms on

the right of (2.14) cancel each other. If we define

Un (P) _ (U(xn),n (2.15)

we have the following result for the temperature derivative

of in K
n

d In Kn)/ , -U (0) + nUl(0).

Hence,

in Kn(p) in Kn(O) - 0 dp'[U (s') - nUI(0')]. (2.16)
n n 0 n

16



CI

The first term on the right can be evaluated analytically,

and the integrand on the right can be evaluated by performing

molecular dynamics simulations. This is the basic expression

we use for the evaluation of the cluster formation equilib-

rium constants.

To evaluate the high temperature limiting behavior of

in Kn, we note that at high temperature the Boltzmann factor

can be replaced by unity and we have

Kn (0) =1 n(O)/[iI(0)]n

= (n!V) 1  n d nc(n)(xn)/[V - 1 dxl n

V V

For each molecule we convert the variables of integration to

the momentum variables, a center of mass variable, and a

set of internal coordinates. The C(n ) function depends only

on the center of mass variables. The momentum and internal

coordinate integrations factor out of the numerator and

denominator and cancel each other, leaving

K (0)- (n!v)l d=nC(n)(E n

V

where the r n are the center of mass variables. This integral
9

has been evaluated by Lee et al. The result is

17



K (0) - a(n)n 3/2[4R 3] n-ln! (2.17)n n

where a(n) is a function of n whose values range from 2.437

to 2.974. For n f 2 to 5, the values are 2.828, 2.436, 2.590,

and 2.661, respectively. (The values reported in Table I of

Reference 9 are incorrect.)

A potential complicating feature of the beta integra-

tion in Eq. (2.16) is that for some intermolecular potentials

the integrand diverges as 0- 0. (The divergence is integra-

ble, however.) If the integrand is very large, it is diffi-

cult to evaluate accurately by computer simulations, since in

general the statistical noise in the answer will also be large.
(3 +n)

This divergence exists for potentials that increase as r

as the interatomic or intermolecular distance r decreases to

zero, for n 2 0. For the Lennard-Jones potential, for example,

the-integrand would diverge. The potentials we use for water

diverge only as 1/r for small r, and the integrand approaches

a finite value as -0.

18



D. Choice of the R nand the relationship between cluster

formation constants and virial coefficients

According to the definition of cluster that we use, a

necessary condition for n molecules being a cluster of n

molecules is that they all lie within a sphere of radius R n

centered at their mutual center of mass. We will refer to

this sphere as the "cluster containment sphere." The choice

of the containment sphere radius for each value of n is

arbitrary; for any set of choices, Hill's formal theory

provides expressions for the equilibrium constants for cluster

formation. When the various R nsatisfy certain conditions,

it can be shown that the equilibrium constants for dimer and

trimer formation are simply related to the second and third

virial coefficients. Here we discuss our choice of the Rn

and the relationship of equilibrium constants and virial coef-

ficients.

For most of our calculations, we chose R n using the

criterion of Lee et al. 9i.e. we required that the volume of

the sphere for clusters of n molecules be five times the

volume occupied by n molecules in the liquid at standard

temperature and pressure. Thus

R 3.292 n 1/3

19
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The factor of five is admittedly arbitrary, but Lee et al.

demonstrated that the free energy of clusters of atoms is

independent of the volume of the containment sphere for low

enough temperatures. For clusters of three water molecules,

we have also performed calculations with a different choice of

R and have verified that the equilibrium constants are
3

insensitive to the volume of the containment sphere at low

temperatures.

The equilibrium constant for dimer formation can be

related to the second virial coefficient for the gas under

certain conditions. When two molecules are in a cluster,

they are less than a distance 2R2 apart. Thus the dimer con-

stant is not affected by the form of the intermolecular poten-

tial for separations larger than this. If the potential is

zero at such large distances, it is straightforward to show,

using Eqns. (2.1) and (2.8) that

( Q + [V_ -(2R 2 )3 ]Q2/2V.

Using the standard relationship between the second virial

coefficient and the partition functions for one and two

molecules

2~ 1~2 ~

20
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we f ind

B 1 6vR 3/3 -K (2.18)2 2 2

Thus, if K2 is calculated for a particular choice of R2and

a particular intermolecular potential, this equation shows

that the result can be used to obtain the second virial coef-

ficient for a gas whose intermolecular potential is zero for

separations greater than 2R 2and equal to the potential used

in the calculation for separations less than 2R 2.

A similarly simple relationship for the third virial

coefficient cannot be obtained for an arbitrary choice of R.

However, if f

R 3= 2R 2(2.19)

and if the range of the potential is equal to or less than

2R 2, we can obtain a simple result. (A simple result can

also be obtained if R 3 > 2R 2, but we shall not discuss this

case.) When these restrictions are satisfied, if three

molecules are located so that there are two (or three) inter-

molecular distances less than 2R 2 the three molecules must

form a trimer. The points in three molecule configuration

space can then be divided into the following sets: A. points

in which the three molecules form a trimer; B. points in

21



which the three molecules do not form a trimer but two

molecules form a dimer; and C. points in which the three

molecules do not form any dimer and no intermolecular dis-

tance is less than 2R2 . In set C, all the intermolecular

interactions are zero. In set B, the molecule that is not

in the dimer must be separated from the center of mass of the

other two by at least (3/2)R3 , which is equal to 3R2 , to avoid

formation of a trimer. Since the other two are separated by

a distance of less than 2R this latter condition also

guarantees that the third molecule is further than R2 from

each of the others and hence does not interact with the other

two. It is then straightforward to show that

Q = Q(3 ) + [V- (4r/3)(3R2 )
3 ]IQQ(2)/V + aQ 3

where the three terms on the right correspond to the regions

A, B, and C, respectively. The quantity a is an integral

that depends on V and on R2 but is independent of p. Using

the standard relationship between the third virial coefficient

and the two and three molecule partition functions,

B V 2Q/ 4(2/ 4 2 1
[2(Q/Q~ -4 QQ)+2(Q /Q ) -Ill

and Eq. (2.18), we find

B3 -2K*+4B2  72 RB 2 + ( 2a+ 2- 32rR3 V/3+ 384 2 R6

B3  3 B 2 - 2 w 2 2  2 1

22



where the prime in the trimer equilibrium constant denotes

that it is defined using the nonstandard trimer containment

sphere radius given in Eq. (2.19). The integral a can be F

evaluated tediously. A simpler procedure is to use the fact

that for = 0 the virial coefficients are zero and the equi-

librium constants are given by Eq. (2.17). Then we obtain

B = -2K' + 4B 2 _ 72rR 3B + 48Ow2 R6  (.03 3 2 2 2 (220

This relationship between the second and third virial coef-

ficient and the dimer and trimer equilibrium constants is

valid when Eq. (2.19) holds and when the range of the inter-

molecular potential is equal to or less than 2R2.

23
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III. Theory of the Simulation Algorithm

A. Description and justification of the algorithm

To evaluate U n(P), defined in Eq. (2.15), we must

evaluate the average of the n molecule potential energy over

a distribution of n molecule phase points, where the distri-

bution function in n molecule phase space is proportional to

exp[-pHQxn)]C (2s) (3.1)

The function C n can be regarded as the Boltzmann factor

for a hard potential that keeps the n molecules within the

region of space in which they form an n molecule cluster.

If we define

W (n) (sn) 0  if C (n) (sn)l

(n) nCO if C (X)=0,

then the distribution function in (3.1) can be written as

exp[ H (2s n) + W (n) (X n)M, (3.2)

which is a Boltzmann factor for the combination of the

molecular Hamiltonian and the wall potential. From (2.11)

it can be seen that the wall potential is a function of the

center of masses of the n molecules and is independent of

24



their internal coordinates. Since the wall potential depends

only on the relative positions of the centers of mass, it isI

a momentum conserving interaction. When the molecules are

within the cluster containment sphere of radius R ncentered

at their mutual center of mass, the potential is zero, but it

becomes nonzero and infinite when the center of mass of any

of the molecules touches the surface of the cluster contain-

ment sphere. When this happens, the relative velocity of the

center of mass of that molecule with respect to the mutual

center of mass of the remaining n -1I molecules is reversed in

direction and unchanged in magnitude. In effect, the molecule

that hits the surface of the containment sphere is specularly

reflected from the surface and the velocity of each of the

other molecules is changed by the amount required to conserve

total momentum. Each of the other molecules suffers the same

change in center of mass velocity, and the positions, internal

coordinates, and internal velocities of all the molecules are

unaffected. The collisions with the wall conserve kinetic

energy.

To generate a set of phase points for an n molecule

cluster that are distributed according to the Boltzmann factor

in (3.2), we use the following procedure, which is a combina-

tion of the molecular dynamics and Monte Carlo simulation

25



methods. We calculate a molecular dynamics trajectory for

a system of n molecules subject to the Hamiltonian H and to

the wall potential W. At regular intervals of time, we replace

the momenta of each of the atoms by a momentum chosen at random

from the Boltzmann distribution appropriate for the mass of

the atom and for the temperature of interest. This latter pro-

cedure can be regarded as subjecting the atoms to stochastic

collisions with a heat bath that has the temperature of inter-

est. Using the theory of Markov processes, it is possible to

show that this combination of Hamiltonian dynamics and sto-

chastic collisions is a Markov process and that a trajectory

for the process has the property that the time average of a

mechanical property over a trajectory is equal to the statis-

tical average of the same property over a distribution function

proportional to (3.2), provided the trajectory is long enough.

(The details of the proof are similar to those of a proof in *

Reference 12 and they will be omitted here.)

Three important assumptions must be made to apply the

theorem. First it must be assumed that under the motion

generated by the Markov process a system can in principle get

from any phase point to any other phase point in a finite

amount of time. (In other words, the motion must be ergodic.)

The second assumption is that the trajectory used in the

26



calculation is long enough so that the trajectory actually

samples all the important parts of phase space. The third

assumption is that the trajectory is long enough that the

statistical noise in the calculation is averaged away.

For dense liquids it is commonly believed that the first

assumption is correct, and it is very reasonable to expect

that it is correct for this type of simulation of a cluster.

The second assumption can be tested by starting two trajec-

tories in very different parts of phase space and seeing if

they both give the same time average. The statistical error

in a calculation can be estimated on the basis of physical

reasoning or from the results of the simulation. In the next

part of this section we discuss how the statistical error can

be estimated.

B. Estimation of statistical error

Let A represent a dynamical variable. Ensemble averages

of any quantity over the correct distribution will be denoted

by angular brackets. Time averages over a particular trajec-

tory will be denoted by overbars. The time average of A is

AT_ Idt A(t),

0

where A(t) is the value of A at time t on the particular tra-

jectory. The theorem mentioned above states that under the
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appropriate conditions

A - (A) as t

Le t

A(t) = A(t) - (A).

Then the error made in assuming A and (A) are equal is

A - (A) - T dt A(t).

0

The square of the error is

2 2T T
(A-(A>) 2  2  

° dtl 0 dt2 A(t1)A(t2 ).

0 0

We can estimate the square of the error by calculating the

ensemble average of both sides of this equation; i.e. we

calculate the average over an ensemble of trajectories start-

ing at all points in phase space and appropriately weighted

by the probability distribution of the initial state. We

obtain

((A-(A))) T 2 S dt1 TS dt 2 (&,(t 1)A(t2)).
0 0

The average in the integrand is the ensemble averaged two

time correlation function of the fluctuation of A from its

ensemble average. For the ensemble, such a correlation
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function depends only on the time interval It1 - t2 1, and we

expect the correlation function to vanish as it1 t2 1

Thus we can write

2[
<A(tl)A(t2)) L= 2>g(t 1 - t 2 )

where

g(O) = 1

g(t) - 0 as t--. -

We obtain

(A ) = 2( 2 > /T (3.3)

where

= Sdt g~t)
0

In obtaining Eq. (3.3) we have assumed that T is large com-

pared with the times for which g(t) is nonzero. The quantity

can be regarded as the correlation time for fluctuation

of A about its ensemble average. (If g(t) were an exponential

function of t, T c would be the time constant for the exponen-

tial.) Let us define

Nc - T/ c.

N is the number of correlation times contained within the
C

duration, T, of the trajectory. Hence
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((A -(A))2) 1/2 = (A2) 1/2 (2/NC) I / 2  (3.4)

This is an estimate of the root mean square error made by

assuming that A obtained from one trajectory is equal to (A).

To estimate the right side of this equation it is reason-

able to use the results of the one trajectory and assume

<62> = ((A-(A))2> P (A-) 2  (3.5)

and

2
(A >g(t) =W(( )

T-t

(T-t)"  JO dt [A(t 1) -A][A(tf+t) 
-A] (3.6)

0

i.e. to assume that the trajectory averaged correlation func-

tion of fluctuations of A from its trajectory average is

approximately equal to the ensemble average.

The time average (A-'A)2 is easy to evaluate by perform-

ing the indicated integration of fluctuations of A. (Alterna-

tively, when A is a potential energy, as it is in our case,

the ensemble average squared fluctuation in the potential

energy is simply related to the temperature derivative of

the average potential energy, which can be estimated from

numerical differentiation of the averages with regard to

temperature.) The correlation function on the right side of
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the last part of (3.6) is more difficult to evaluate, but it

can be obtained from the results of the simulation. Alterna-

tively one could use physical reasoning to estimate c

The quantity T can be interpreted as the time over whichC

fluctuations in A are correlated rather than uncorrelated. If

A represents intermolecular potential energy, as in the problem

at hand, then there are some parts of phase space where A is

large and negative (namely in hydrogen bonding configurations),

some parts where A is small (namely when the molecules are far

apart), and other parts where A is large and positive. At any

temperature, a certain range of energies is likely to be import-
'4

ant in the equilibrium distribution. Then at any temperature,

T should be approximately the time scale for moving from theC

low energy to the high energy parts of phase space that are

important at that temperature.

C. Choice of interval between stochastic collisions

An important parameter in the calculation is the time

interval between the stochastic collisions suffered by the

molecules. For infinitely long trajectories, the value of

the time interval is irrelevant: correct average potential

energies will be obtained for any choice of interval. For

trajectories of finite length, the value of the interval has

an important effect on the statistical error of the calculation,
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and thus it must be chosen carefully.

The stochastic collisions equilibrate the kinetic

energy and the total energy of the water molecules to the

values typical of the temperature of interest. Taking only

this into account, one might be tempted to make the collision

frequency very large to insure rapid equilibration. However,

this would impede the motion of the molecules in configuration

space. In effect, all motion would be diffusion limited. As

discussed above, it is important that the molecules be able

to visit all the appropriate high energy and low energy parts

of configuration space in order to obtain good statistical

averages from the trajectory. If the stochastic collisions

are too frequent, T will be too large, thereby making the

statistical error large. If we can estimate T in the absence

of stochastic collisions, it is worthwhile to choose the time

interval between stochastic collisions to be no shorter than

this estimate of T c Stochastic collisions that are this

infrequent will not inhibit the motion of the system from high

to low energy parts of configuration space. Thus, in our

calculations on a particular system at a particular tempera-

ture, we make an estimate (on the basis of physical reasoning

or previous calculations) of what T c will be for that system

and we choose the interval between stochastic collisions to

be that estimate.
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IV. The Molecular Interactions

For this simulation of water clusters the intramolecular

potential was assumed to be a sum of atom-atom potentials.

For the two intramolecular atom-atom potentials, we used

harmonic potentials with equilibrium bond lengths and spring

constants which correspond to the minima and curvatures of

the improved central force potentials of Stillinger and

Rahman1 3 :

VOH(r) - I(i14 7.6)(r - 0.9584 kcal/mole

VHH(r) = I(257.3)(r - 1.5151 1)2 kcal/mole.

The minima of these two potentials are those which reproduce

the correct geometry of an isolated water molecule. The

curvatures were selected to reproduce the asymmetric stretch

frequency in D20 and to equalize the fractional errors in

the frequencies of the other two vibrational modes of the

same molecule.

To define the intermolecular potential, let rij repre-

sent the position of the ith atom on the jth molecule. The

first atom on each molecule is the oxygen atom and the others

are hydrogen atoms. We define a set of intermolecular atom-

atom interactions V00 (r), VOH(r), and VHH(r), and a switching
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function S(r). Then the intermolecular interactions are of

the form:

(rll Vr2 1 ,r31 ,r12 ,r22',r32)

3
= S( 11l1-r121 ) . Z. Vij (Iril -r.J21 ) $

where the subscripts on the Vij functions should be 00, OH,

or HH, as is appropriate to the nature of the atoms i and j.

For these atom-atom intermolecular interactions, we chose to

14
use those of Watts which were optimized to reproduce the

temperature dependence of the second virial coefficient of

water in the temperature range for which experimental data

was available. The switch function, S(r), is designed to

switch the Watts potential off smoothly as a pair of molecules

15separates. The switch function has been used before with

excellent results. The form of the S(r) is:

S(r) = 1 for 0 < r < r L

M s(r ) for rL < r < rU

- 0 for rU < r.

where s(r 2) is a fifth-order polynomial function in r2 which
2

is designed to have zero first and second derivatives at rL

and2 and which lets S(r) be continuous. (We chose 6.0
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and 5.5 for rUand r L respectively.) The use of switch

functions is preferable to a simple truncation (or trunca-

tion and shift) of the atom-atom potentials especially when

the values of these potentials or the forces are large

where the truncation is to occur. This is the case for the

water-water potentials used here because the three atom-

atom components are dominated by a long-range Coulombic

term at large distances even though their sum, the full Watts

potential, is dipolar-dipolar at these distances. The use

of a continuous switch function in the potential is also

preferable to truncation of the force for intermolecular dis-

tances beyond a certain cutoff distance. Truncation of the

force leads to a force that is not the derivative of a poten-

tial and hence leads to lack of conservation of energy and a

secular heating of the sample.

The choice of a purely harmonic intramolecular potential

was motivated by a desire for simplicity and by the expecta-

tion that cluster equilibrium constants are more sensitive to

intermolecular interactions than to intramolecular inter-

actions. The Watts intermolecular potential was chosen for

these cluster studies because it has the correct second virial

coefficient. The switching off of the Watts potential at

long distances is expected to have a small effect on the

properties of the small clusters we are concerned with here.
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V. Computational Procedure, Error Analysis

and Consistency Checks

Clusters of one to five molecules were simulated by

molecular dynamics using the potentials described in the

previous section. For each cluster size, the system was

equilibrated to several different temperatures through the

administration of stochastic collisions on every atom at

regular intervals. The potential energy, U n, of each n

molecule cluster was calculated at each molecular dynamics

time step and averaged over the length of a run. Finally,

Un - U1 was plotted and integrated as a function of

(= /k BT) to yielId In K n() This section describes some

aspects of the computational procedure, states the parameters

of the calculation, and discusses several consistency checks

used to verify the accuracy of the calculation.

To choose the time intervals between stochastic colli-

sions, we estimated the correlation time for poten tial energy

fluctuations using physical reasoning and choose the interval

to be that estimate. For monomers, the correlation time for

potential energy fluctuations was estimated to be the period

of the slowest vibrational mode, the bending vibration,

2 x 10-14 sec. For clusters, we considered two possibilities

for the time scale for energy fluctuations. The first is
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the time for a molecule to cross the containment sphere. At

high temperatures, the molecules are not bound to each other

and the time scale for potential energy fluctuations is

approximately the time between collisions of a molecule, which

is approximately the sphere traversal time. The second is the

intermolecular vibrational period for a cluster, which we

estimated as 0.09 psec. This is an appropriate estimate of

the correlation time at low temperatures. We actually used

the geometric mean of these two estimates as the inter-val

between stochastic collisions for our simulations of clusters

at all temperatures. Typical values of the interval were 0.3

to 0.6 psec.

The time duration of each simulation was chosen on the

basis of the amount of statistical error that would be tole-

rated. To estimate the statistical error as a function of

duration, Eq. (3.4) was used. The correlation time needed for

the right side of Eq. (3.4) was estimated to be equal to the

geometric mean of thewsphere traversal time and the cluster

breathing period. The mean square fluctuation of the poten-

tial energy was estimated using Eq. (5.1) below and an esti-

mate of (27n -6)kB/2 as the heat capacity of an n -mer. (Note

that the statistical error estimated in this way was done in

advance of the simulation and the estimate was used only for
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deciding on the length of the simulation. The statistical

errors reported in the results section below were obtained

from correlation times and mean square energy fluctuations

obtained from the simulation data.) The durations varied

from five nanoseconds (for the dimer at 2O0CK) to 400 pico-I

seconds (for the monomer at 500K).

The statistical errors in the resulting potential energy

averages were calculated by computing the mean square fluc-

tuation in the potential energy for each simulation and the

correlation function of the fluctuations for some of the simu-

lations and using Eqs. (3.4)-(3.6). Typical values of the

error were 0.02, 0.2, 0.2, 0.3, and 0.4 kcal/mole for

U 1 03).. .U5 (p), respectively.

The choice of time step for the numerical integration of

the equations of motion is crucial for obtaining accurate

results. The step must be small enough that the integration

algorithm gives an accurate description of the trajectory, at

least for the purpose of calculating potential energy averages.

Too small a value is undesirable, because for a given amount

of computer time the number of correlation times in the tra-

jectory is inversely proportional to the time step. We chose

the time step in the following way. We chose the durations

of the runs so that the statistical error in the potential
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energy averages would be about 0.1 kcal/mole. We wanted

the time step to be small enough that the trajectory calcu-

lated for times of the order of the correlation time would

give average potential energies that are in error by no more

than 0.05 kcal/mole. We performed various test calculations

starting at the same initial mechanical state and integrat-

ing the equations of motion for the same length of time

using different time intervals, and we determined what the

time step should be to give the desired accuracy. As the

result of these tests, we used a timestep of 0.2 x 101 5 sec

in all calculations except those at 40000K, which used 0.1

x 10- 15 sec.

The equations of motion were integrated using a version

of the Verlet algorithm discussed in the appendix.

U1 , the monomer energy, as a function of T, was fit
3

very well by a straight line of slope 2 kB. This is not sur-

prising since the atoms within a molecule interact by purely

harmonic potentials. There was substantial deviation from

the straight line behavior only at the one high temperature

of 4000"K. (This may be due to rotational-vibrational coup-

ling.) For all lower temperatures, the linear fit was used

to obtain nU I.

For each cluster size the data consisted of U -nU 1 at

12 to 15 values of the temperature (see Figure 1). Since
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it is the area under this curve as a function of P = 1/kB T

that gives d In K n/d , the temperature values selected were

more or less evenly spaced in p and ranged from B = 0.25

(kcal/mole)- (_ 20000K) to 1 = 3.0 (kcal/mole)- 17CPK).

For each cluster size, the function U n-nU was fitted

to an analytic form to facilitate the integration of in K ().
n

The fitting procedure called for a simple analytic form, so

that the integration would be easy to perform, as well as

some sort of smoothing, to decrease the effect of statistical

noise.

The fitting proccdure chosen used a cubic spline. For

the m values of x. and yi, the fit is determined by the m- I

sets of the four coefficients that define the cubic polynomial

in each interval. The cubic spine fit is further required to

be continuous and have continuous first and second derivatives

at each x.. Most cubic spline fits further require the fit

to pass through all the data points. To allow for smoothing,

this last condition was relaxed. Given a set of error esti-

mates 6y. for each data point, the procedure that was 
used 1 6

produced the unique cubic spline, S(x), such that the quantity

jmdX[ S, (x) ] 2

X 1

40



was minimized subject to the constraint that

m S(x) -y. 2
i=1 1i

If P = 0, the cubic spline goes through the data points.

For very large P, the spline approaches a linear least squares

fit.

The fitted function S(x) is unique for each choice of

17
P. Following earlier work, P is determined to be the value

which allows the fit to go "between" the data points rather

than consistently above or below them. This idea is made

more precise by defining the residual

Ri y i - S(xi)

and a correlation

m-I
E RiRi+ Ii=l i ~

Q is a measure of the amount of smoothing. For large values

of P, adjacent data points tend to fall on the same side of

the fit and Q is positive. For small values of P, Q is

invariable negative. Furthermore, Q is usually a well-behaved

function of P. The value of P that yields Q - 0 is taken as
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the value that yields a fit that is smoothed enough to remove

statistical noise without removing the features of interest.

The values used for 6yi were the statistical error in

the U . Note that an acceptable fit should also satisfyn

Ri b byi for all i. This condition was usually satisfied.

Once the data was plotted and the fit was determined,

it was quite easy to integrate the d in K /dp curve from

p 0 to any other value. As explained in Section II, there

is no divergence in U -nU near = 0.n I

The remainder of this section will discuss several con-

sistency checks that were made by comparing different cal-

culations in order to detect various types of systematic and

random errors.

One kind of error possible in this procedure arises from

there being two or more low-energy regions of phase space

with different values of the potential energy and separated by

a large potential barrier. At low enough temperatures, the

rate of barrier crossing will vanish and average values of Un

will be different depending upon the side of the barrier on

which the system remains trapped. (One possible example

might be the existence of two stable n-molecule clusters,

one in an n-membered ring and one in an n-i membered ring

with a branch.) One way to test for the existence of such a
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problem is to do two or more simulations from different

starting configurations and notice if the results obtained

are consistent with each other--i.e., if each lies within

the error ranges of the others. We performed such tests at

low, medium and high temperatures for clusters of all sizes

considered to check that the U ncomputed was the same at each

temperature for all starting configurations. If there were

low energy but mutually inaccessible regions of phase space

not sampled during our simulations they either did not show

up in our tests or the values of the energy U nin each region

were very close. To obtain the plots of U n -nU I which were

fitted and integrated, the values of U nfrom different initial

conditions were averaged together.

A second consistency check is to see if the fluctuations

in potential energy at a given temperature are correctly

related to the heat capacity at that temperature. For a

canonical ensemble,

U 2 _n = dU (5.1)
n n n~

To make this check U2 was calculated and averaged at eachn

time step so that the left side of Eq. (5.1) could be deter-

mined. dtJ n/do was determined from the cubic spline fit of

U ~nU 1 as a function of a and the linear fit of U 1 as a func-

tion of T. The results of this test for dimers and pentamers
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are displayed in Figure 2, and those for trirners and tetramers

are similar. In this figure the curves are more accurate than

the dots, since each curve is the smoothed result of calcula-

tions of the average energy for all simulations of an n molecule

cluster, whereas each dot is the result of a calculation of

the energy fluctuations for just one simulation. If the dots

fell exactly on the curve, this would mean that each simula-

tion was long enough for the mean squared fluctuations in the

potential energy to be calculated accurately. The statistical

errors in average values is usually smaller than the errors

in mean squared fluctuations, and thus agreement of the points

and the curve would imply that the average potential energies

are subject to very little statistical error. If the points

fall near but not exactly on the line, it is still likely

that the trajectories are long enough to give accurate averages

even though their fluctuations are in error.

At high or low temperature, where the system is behaving

mostly as n noninteracting molecules or as an n molecule

cluster, respectively, the agreement of the points and the

curve is excellent. The agreement is much worse at inter-

mediate temperatures where there is a local maximum in the

cluster specific heat. In fact, the correlation times evalu-

ated from the simulations in the intermediate region are
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generally longer than the prior estimates based on the

sphretraversal time and the cluster intermolecular vibra-

tional frequency. This probably means that the time for

formation and breakup of clusters determines the correlation

time. For these temperatures, the runs were not long enough

to achieve the same statistical accuracy achieved at lowerA

and higher temperatures.

The volume of the containment sphere should have no

effect on either U -nU or K at low temperatures, providedn 1 n
the volume is large enough not to interfere with the motion

of the n molecule cluster. To test that this was so, we per-

formed a new series of simulations for the trimer using a

sphere that is 5.33 times larger in volume than the standard

trimer containment sphere. Although there should be dif-

ferences in U nand K nat high temperature, these should dis-

appear at temperatures low enough that the cluster is compact

and the molecules stay away from the wall of the containment

sphere. In Figure 1 it can be seen that at low temperature

the energy of the cluster is indeed independent of the size

of the containment sphere, to within the statistical uncertainty

of the calculation. The equilibrium constants are shown in

Figure 3. It is easy to show from Eqns. (2.12) and (2.13)

that, at each ~,K n(p) is an increasing function of the radius
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of the containment sphere. Thus, in Figure 3 the dashed

curve should always be above the solid curve, if both were

calculated exactly. In fact, the curves cross, but the dif-

ference between the two curves at low temperatures is approxi-

mately equal to the estimated statistical error in the two

calculations. Thus, to within the statistical uncertainty

in our calculations, the equilibrium constants are the same

I for both choices of the containment sphere radius.
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VI. Results

The results for the logarithms of the equilibrium

coefficients are displayed in Figure 4. In each case, these

are graphed relative to In Kn(0) , the infinite temperature

result [see (2.17)].

The equilibrium coefficients for dimer and trimer forma-

tion may be compared indirectly with experiment as a test of

the method and of the intermolecular potentials. In Section

II we discuss the relationships that exist between the second

and third virial coefficients, B2 (p) and B3 (P), and the

second and third equilibrium coefficients, K2( ) and K (13).2 3

These allow the calculation of a theoretical B2 (p) from

K2(p) , as well as the calculation of an experimental In K(W

from experimental B2 (p) and B3 (B).

Figure 5 provides the comparison of experimental
18 20

and theoretically derived second virial coefficients. The

experimental values are shown over the entire range of tempera-

tures for which the experiments were performed. The theo-

retically derived curve for B2 came from Eq. (2.18) plus small

corrections for the effect of the long-ranged dipolar part

of the intermolecular potential. (The second virial coeffi-

cient can be expressed as the integral of the Mayer f function

over all relative positions and orientations of two molecules.

Equation (2.18) for B2 was derived assuming that the interaction,
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and hence the Mayer f function, is zero for intermolecular

distances larger than 2R2 Thus, to obtain B for the full2 2

Watts potential, it is necessary to add the contribution

from the integral for distances larger than 2R 2. The latter

was calculated analytically 21assuming that the Watts poten-

tial was dipolar at those large distances.)

The agreement between the experimental and theoretical

second virial coefficients is seen to be quite good. Over

the temperature range for which experimental information is

available, the differences between the theory and experiment

are only about as large as the differences among the various

experiments. It should be noted, however, that the Watts

potential was constructed to give second virial coefficients

in agreement with experiment. The agreement between experi-

ment and theory as shown in Figure 5 should therefore be

interpreted as confirmation of our method for computing phase

integrals. The procedure used by Watts 14to compute second

virial coefficients for various water potentials kept the

water molecules rigid at their equilibrium internuclear con-

figurations. The present calculations make no such restric-

tion, and so the present method for calculating dimer forma-

tion constants of vibrating molecules gives a convenient way

of calculating second virial coefficients of vibrating molecules.
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In the case of water, however, the effect of vibrations in

this purely classical calculation of the second virial coef-

ficient is small.

Figure 6 compares K', the trimer equilibrium constant

obtained from simulations using the larger than standard

trimer containment sphere, with an experimental value of K'
3

calculated from experimental second and third virial coeffi-

cients using Eq. (2.20). (In order to be consistent with

this equation, we have subtracted from the experimental second

virial coefficients an estimate of the long ranged dipolar con-

tribution, since K and K'" were calculated for a potential

that had no such long ranged part. In principle, the corres-

ponding correction to the experimental third virial coeffi-

cient should also be made, but that is much more difficult

and is not necessary since the experimental third virial

coefficient makes only a small contribution to the experimental

curve in this figure.) The difference between the experimental

and theoretical results is of about the same size as the dif-

ference between different experiments and the statistical

uncertainties in the calculations.

In principle the third virial coefficient can be calcu-

latd ro K2 adK i using Eq. (2.20). Unfortunately, this is

not possible in practice because of the magnitude of the
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statistical error in K' and because Eq. (2.20) gives the third
3

virial coefficient as the small difference between much larger

numbers.
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VII. Discussion

In this paper we have presented a practical procedure

for evaluating the equilibrium constants for the formation of

clusters in the gas phase using equilibrium classical statis-

tical mechanics and assumptions about the intermolecular inter-

actions. The calculations were based on a specific model

potential for water and on the assumption that the energy of a

collection of molecules is the sum of the interactions between

pairs of molecules. The Watts intermolecular potential is

known to be significantly different from the true water poten-

tial.2 The assumption of pairwise additivity of the potential

is also known to be not quantitatively accurate for water.

Moreover, for water the internal motions cannot be regarded as

classical. Because of these three facts, the calculations

presented here should not be regarded as predictions of the

equilibrium constants for water; rather they are example calcu-

lations designed to show the feasibility of the method. The

method could easily be applied to a different choice of poten-

tials, pairwise nonadditive potentials, clusters of ions and

molecules, and other situations. The restriction to classical

mechanics is intrinsic to the molecular dynamics method.

The method is an alternative to the methods of Lee et al. 
9

10and of Mruzik et al. It differs from that of Lee et al. by
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using an integration to infinite temperature to establish the

absolute free energy of a cluster rather than using an inte-

gration over the value of the size of the containment sphere.

It differs from the method of Mruzik et al. in that the latter

calculates the free energy difference for clusters differing

by one molecule and relies on the fact that the absolute free

energy of the single molecule cluster can be evaluated exactly.

As a byproduct of this method, we have a simulation

method for calculating the second virial coefficient of non-

rigid molecules.
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Appendix: Velocity Form of the Verlet Algorithm

In this appendix we state the velocity form of the Verlet

algorithm,23 which we use for integrating Newton's equations

of motion.

Assuming, for notational simplicity, that there is one

degree of freedom, Newton's equations can be written as

= f(r)

in which f(r) is the force divided by the mass. Let h be the

time step for the numerical integration, and let

t - nh
n

r n = r(t n )

n = ~n)

The Verlet algorithm is based on the following approximations:

rn f (rn+ -rn)/2h (A.I)

n ft (r n+l -2r n + r rn- I)/h "  (A. 2)

The Verlet algorithm is obtained by treating Eq. (A.2)

as an equality to get

rn+l ' 2 rn - rn l +h 2f(r n). (A.3)

This can be the basis for a recursive procedure for calcu-

lating all subsequent rn from r0 and r . If the velocity is
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needed we define 4

v = (rn+i - r )/2h (A.4)

and using Eq. (A.1) we interpret v as r In the numericaln n

analysis literature, the Verlet algorithm is known as the

"explicit central difference method."24

A better way of implementing the Verlet algorithm on a

computer with finite precision is to use the "summed form."

Defining

z (rn+I -r)/hn~ n)

it is easy to show that Eq. (A.3) is equivalent to

rn = rn l +hznI

= Z + hf(rn

These equations can be iterated to obtain all subsequent

values of rn and z from r0 and z0 * If velocities are needed,

they can be obtained from

v n (z n+zn1 )/2.

These equations are mathematically equivalent to the Verlet

algorithm, but they are not numerically equivalent and are

superior on a computer of finite precision.
24
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The velocity form of the Verlet algorithm is one in which

v appears directly in the equations to be iterated. It isn

straightforward to show that the following equations are

equivalent to Eqs. (A.3) and (A.4).

r n+ I  rn + hVn + h2f(rn)/2

Vn+I = Vn + h[f(rn+1) + f(r n)]/2.

These equations retain the superior numerical precision of

the summed form. Since they are a way of directly getting the

position and velocity at the end of the time step from the

position and velocity at the beginning of the step, they provide

an easy way of grafting stochastic collisions into the algorithm.

The effect of a stochastic collision is merely to change the

value of v just before rn+1 is to be calculated.
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Figure Captions

Figure 1. U - nU for n = 2 to n 5. The dashed line shows
n 1

U3 - 3U with U3 calculated using the larger than

standard trimer containment sphere. (Vertical lines

are error estimates of ±1 standard deviation.)

Figure 2. Dimer (n=2) and pentamer (n =5) potential energy

heat capacity, -dU /dp (solid lines), and fluctuation
n

in potential energy, (U n 2 (Un) 2(circles), as a

function of $. See the text for the use of this

graph as a consistency check on the calculation.

Figure 3. Ln[K 3 (P)/K3 (0)] calculated using both the standard

containment sphere size (solid curve) and the larger

than standard containment sphere size (dashed curve).

K3(0), to which both curves are referenced is that

of the standard trimer containment sphere.

Figure 4. Ln[Kn ()/Kn(0)] for n = 2 to n - 5.

Figure 5. The second virial coefficient, B2 (0), from experi-

ment and theory. The solid line shows B2 calculated

from K2 The dashed line is from the data of

Keyes, et al. (Reference 18); the dotted line is

from the data of Kell et al. (Reference 19); the
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dot-dashed line is from the data of Vukalovich

et al. (Reference 20).

Figure 6. Ln[K'(P)/Kj(O)1 as computed from theory (solid

curve) and from experiments. The theoretical curve

was obtained from molecular dynamics results using 4

the larger than standard trimer containment sphere.

The experimental curves were obtained using Eq. I
(2.20) and second and third virial coefficient data

of Kell et al. (Reference 19) and of Vukalovich

et al. (Reference 20). The data of Kell et al.

determine the dotted curve and that of Vukalovich

et al. determine the dot-dashed curve. 1

60



/(kcal/mole)'

0

-5% 
=

i%a%

.- 20

S4

-3-



50-

40-

30-
Cj

E0
0

C-n

20-
n2

I00

00

01.0 2.0 3.0
f(kcol/moleT'



I
I

I
1
I

I

Ito II

II
I
I

I

I8 /
I/1a

I,

11') I

/

C ,1'

4 - - .- - - --

- -

2

0
0.0 1.0 2.0

/3 (kcot/mole)'

4. .. ~. .'



25

20-

n5

II

n=55t4
15-

10 2

5

0 1.0 2.0 3.0

P (kcel/moe'



/3 (kcal/mole) -

o0  0.5 1.0 1.5
0

N"

200-

-200
E 1.0 1.5 %,%

IN.

-500 "
cq%

m 300-

-4001- \

-500 "

J4

. .. .... .. li: . . . ..,,.,... ,_' ' ',.,, • . ,,"



0.50-

0.40-

a0.30-

-

L-j 0.20-

0.10 /

0.00
0 0.4 0.8 1.2

~(kcal/mole)'



P4-2/A23 472:GAN:716:t,

78u472-608

TECHNICAL REPORT DISTRIBUTION LIST. GEN

No. No.
Copies copies

Office of Naval Research U.S. Army Research Office
Attn: Code 472 Attn: CRD-AA-IP
800 North Quincy Street P.O. Box 1211
Arlington, Virginia 22217 2 Research Triangle Park, N.C. 27709

ONR Branch Office Naval Ocean Systems Center
Attn: Dr. George Sandoz Attn: Mr. Joe McCartney
536 S. Clark Street San Diego, California 92152

Chicago, Illinois 60605 1
Naval Weapons Center

ONR Branch Office Attn: Dr. A. B. Amster,
Attn: Scientific Dept. Chemistry Division
715 Broadway China Lake, California 93555
New York, New York 10003 1

Naval Civil Engineering Laboratory
ONR Branch Office Attn: Dr. R. W. Drisko
1030 East Green Street Port Hueneme, California 93401
Pasadena, California 91106 1

Department of Physics & Chemistry
ONR Branch Office Naval Postgraduate School
Attn: Dr. L. H. Peebles Monterey, California 93940
Building 114, Section D
666 Summer Street Dr. A. L. Slafkosky
Boston, Massachusetts 02210 1 Scientific Advisor

Commandant of the Marine Corps
Director, Naval Research Laboratory (Code RD-I)
Attn: Code 6100 Washington, D.C. 20380
Washington, D.C. 20390 1

Office of Naval Research
The Assistant Secretary Attn: Dr. Richard S. Miller

of the Navy (R,E&S) 800 N. Quincy Street
Department of the Navy Arlington, Virginia 22217
Room 4E736, Pentagon
Washington, D.C. 20350 1 Naval Ship Research and Development

Center
Commander, Naval Air Systems Command Attn: Dr. G. Bosmajian, Applied
Attn: Code 310C (H. Rosenwasser) Chemistry Division
Department of the Navy Annapolis, Maryland 21401
Washington, D.C. 20360 1

Naval Ocean Systems Center
Defense Documentation Center Attn: Dr. S. Yamamoto, Marine
Building 5, Cameron Station Sciences Division
Alexandria, Virginia 22314 12 San Diego, California 91232

Dr. Fred Saalfeld Mr. John Boyle
Chemistry Division Materials Branch
Naval Research Laboratory Naval Ship Engineering Center
Washington, D.C. 20375 1 Philadelphia, Pennsylvania 19112



P4-2/A25 472:GAN:716:tam
78u472-608

TECHtNICAL REPORT DISTRIBUTION LIST. GEN

No.
Copies

Dr. Rudolph J. Marcus
Office of Naval Research
Scientific Liaison Group
American Embassy
APO San Francisco 96503 1

Mr. James Kelley
DTNSRDC Code 2803
Annapolis, Maryland 21402 1

2



472 :CAN :716:tan

78u 4 72-608

TECHNICAL REPORT DISTRIBUTION LIST, 051A

No. No.

Copies Copies

Dn. y. of lifrnia, /...9Dr. M. Rauhut
Dr. n .iv Es -Sfy frnAmerican Cyanamid Company

Los An!< Chemical Research Division
Departmpng emistry Bound Brook, New Jersey 08805

Los Ar geles, Ca ifornia 90024 Dr. J. I. Zink

Dr. H. W. Windsor University of California, Los Angeles

Washirgton State University Department of Chemistry

Department of Chemistry Los Angeles, California 90024 1

Pullmwn, Washington 99163 1 Dr. B. Schechtnan
Dc. r. R. Bernstein IBM

San Jose Research Center
Colorz.do State University 5600 Cottle Road

Department of Chemistry S
Fort Collins, Colorado 80521 1 San Jose, California 95143

Dr. John Cooper
Dr. C. A. Heller "

* Di. C.Code 6130NavI-1l Weapons CenterCoe63
Code Woo'9 Naval Research Laboratory

Chinn Like, California 93555 Washington, D.C. 20375

Dr. J. R. MacDonald
Naval Rcsearch Laboratory
Chermi. try Division
Code (110
WashiTzgton, D.C. 20375

Dr. C. B. Schuster
University of Illinois
Chemi, try Department
Urbane., Illinois 61801

Dr. E. H. Eyring
University of Utah
Department of Chemistry
Salf Lake City, Utah q///.

.Dr. A. Adamson
University of Southern California
Department of Chemistry
Los Argeles, California 90007

Dr. Y. S. Wrighton
:,.usetts Institute of

"i e:- :ology
Department of Chemistry
Cambri",. -, lii-sach, set ts 07139 1



P4-2/B11 472:GAe: 716: lab
78u472-608

TECHNICAL REPORT DISTRIBUTION LIST. 051B

No. No.

Copies Copies

Profe or K. W*Ison Dr. B. Vonnegut
Depart nt o Chemistry, State University of New York

B-4\ / Earth Sciences Building
Univers t of California, 1400 Washington Avenue

San D Xgo Albany, New York 12203
La Jolla, Cali fornia 920931

Dr. Hank Loos

Professor C. A. Angell Laguna Research Laboratory
Department of Chemistry 21421 Stans Lane
Purdue University Laguna Beach, California 92651 1
West Lafayette, Indiana 47907 1

Dr. John Latham
Professor P. Meijer University of Manchester
Department of Physics Institute of Science & Technology
Catholic University of America P.O. Box 88
Washington, D.C. 20064 1 Manchester, England M6O1QD

Dr. S. Greer
Chemistry Department
University of Maryland
College Park, Maryland 20742 1

Professor P. Delahay
New York University
100 Washington Square East
New York, New York 10003 1

Dr. T. Ashworth
Department of Physics
South Dakota School of
Mines & Technology

Rapid City, South Dakota 57701 1

Dr. G. Gross
New Mexico Institute of

Mining & Technology
Socorro, New Mexico 87801 1

Dr. J. Kassner
Space Science Research Center
University of Missouri - Rolla
Rolla, Missouri 65401 1

Dr. J. Telford
University of Nevada System
Desert Research Institute
Lab of Atmospheric Physics
Reno, Nevada 89507 1



P4-2/B13 472:GAN:716:Ia
78u472-608

TECHNICAL REPORT DISTRIBUTION LIST. 051C

No. No.
Copies C~e

Dr. M. B. Denton Dr. John Duffin
Department of Chemistry United States Naval Postgraduate
University of Arizona School
Tucson, Arizona 85721 1 Monterey, California 93940

Dr. R. A. Osteryoung Dr. G. M. Hieftje
Department of Chemistry Department of Chemistry
State University of New York Indiana University

at Buffalo Bloomington, Indiana 47401
Buffalo, New York 14214 1

Dr. Victor L. Rehn

Dr. B. R. Kowalski Naval Weapons Center
Department of Chemistry Code 3813
University of Washington China Lake, California 93555
Seattle, Washington 98105

Dr. Christie G. Enke
Dr. S. P. Perone Michigan State University
Department of Chemistry Department of Chemistry
Purdue University East Lansing, Michigan 48824
Lafayette, Indiana 47907 1

Dr. Kent Eisentraut, MBT
Dr. D. L. Venezky Air Force Materials Laboratory
Naval Research Laboratory Wright-Patterson AFB, Ohio 45433
Code 6130
Washington, D.C. 20375 1 Walter G. Cox, Code 3632

Naval Underwater Systems Center
Dr. H. Freiser Building 148
Department of Chemistry Newport, Rhode Island 02840
University of Arizona
Tuscon, Arizona 85721

Dr. Fred Saalfeld
Naval Research Laboratory
Code 6110
Washington, D.C. 20375 1

Dr. H. Chernoff
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139 1

Dr. K. Wilso
Departme t Chemistry
Universit of California, San Diego
La Jolla C fornia 1

Dr. A. Zirino

Naval Undersea Center
San Diego, California 92132 1

LI



I 
I


